数学の力

京大生が数学の定理・公式の証明や入試問題の解説をするブログ.

絶対値の入った定積分(自作問題1-(3))

問題.

今回は自作問題集の1-(3), 絶対値を含む定積分の問題の解答・解説をします.

問題 .

 \displaystyle \int_{-1}^{1} \frac{|x^3|e^{x^2}}{1+e^x} \,dxの値が \displaystyle \int_{0}^{1} x^3e^{x^2} \,dxの値に等しいことを示し, その値を計算せよ.

 

被積分関数 \displaystyle  \frac{|x^3|e^{x^2}}{1+e^x}に絶対値が含まれているので, 絶対値の中が正である範囲と負である範囲に分けて積分します. そのうち一方を置換積分を用いて変形することで,  \displaystyle \int_{0}^{1} x^3e^{x^2} \,dxに等しいことを示すことができます.

 

 (1+e^x)\cdot(1+e^{-x})=(1+e^x)+(1+e^{-x})となることを利用した問題です.

 

その後の計算は, 部分積分を用いると簡単に計算できます.

 

 

 

 

 

解答例.

\begin{align*}
\int_{-1}^{1} \frac{|x^3|e^{x^2}}{1+e^x} \,dx = \int_{-1}^{0} \left(-\frac{x^3e^{x^2}}{1+e^x}\right) dx + \int_{0}^{1} \frac{x^3e^{x^2}}{1+e^x} \,dx
\end{align*}
 x=-t とおくと,  dx=-dt で,  x:-1\to0 のとき  t:1\to0 なので,
\begin{align*}
\int_{-1}^{0} -\frac{x^3e^{x^2}}{1+e^x} \,dx &= \int_{1}^{0} -\frac{(-t)^3e^{(-t)^2}}{1+e^{-t}}\cdot(-1) \,dt\\
&= \int_{0}^{1} \frac{t^3e^{t^2}}{1+e^{-t}} \,dt\\
&= \int_{0}^{1} \frac{x^3e^{x^2}}{1+e^{-x}} \,dx
\end{align*}
よって,
\begin{align*}
\int_{-1}^{1} \frac{|x^3|e^{x^2}}{1+e^x} \,dx &= \int_{0}^{1} \frac{x^3e^{x^2}}{1+e^{-x}} \,dx + \int_{0}^{1} \frac{x^3e^{x^2}}{1+e^x} \,dx \\
&= \int_{0}^{1} \left(\frac{x^3e^{x^2}}{1+e^{-x}}+\frac{x^3e^{x^2}}{1+e^x}\right) \,dx \\
&= \int_{0}^{1} \left(\frac{1}{1+e^{-x}}+\frac{1}{1+e^x}\right)x^3e^{x^2} \,dx\\
&= \int_{0}^{1} \frac{(1+e^x)+(1+e^{-x})}{(1+e^{-x})(1+e^x)} x^3e^{x^2} \,dx\\
&= \int_{0}^{1} \frac{e^x+e^{-x}+2}{e^x+e^{-x}+2}x^3e^{x^2} \,dx\\
&= \int_{0}^{1} x^3e^{x^2} \,dx\\
&= \left[\frac{1}{2}x^2e^{x^2}\right]_{0}^{1}-\int_{0}^{1} xe^{x^2} \,dx\\
&= \frac{1}{2}e-\Big[\frac{1}{2}e^{x^2}\Big]_{0}^{1}\\
&= \frac{1}{2}e-\left(\frac{1}{2}e-\frac{1}{2}\right)\\
&= \frac{1}{2}
\end{align*}

複雑な定積分と極限の計算(自作問題1-(1))

問題.

今回は自作問題集の1-(1)の定積分と極限の問題の解答・解説です.

問題. 

極限 \displaystyle \lim_{n\to+0} \int_{n}^{\frac{\pi}{4}} \left(\frac{x}{\tan{x}}-1\right)^2 dxを計算せよ.

 

被積分関数は2乗の部分を展開して, 上手く部分積分を使って計算します.

部分積分 :

 \displaystyle \int_a^b f(x)g^\prime(x) dx = \Big[f(x)g(x)\Big]_a^b-\int_a^b f^\prime (x)g(x) dx

 \displaystyle \left(\frac{1}{\tan{x}}\right)^\prime=-\dfrac{1}{\sin^2{x}}=-1-\frac{1}{\tan^2{x}}

となることを上手く使えるかどうかがポイントです.

極限の計算の部分は \displaystyle \lim_{n\to+0}\frac{n}{\sin{n}}=1の公式を使って計算します.

 

 

 

解答例.


\begin{align*}
\int_{n}^{\frac{\pi}{4}} \left(\frac{x}{\tan{x}}-1\right)^2 dx=\int_{n}^{\frac{\pi}{4}} \frac{x^2}{\tan^2{x}} dx - \int_{n}^{\frac{\pi}{4}} \frac{2x}{\tan{x}}dx + \int_{n}^{\frac{\pi}{4}} dx
\end{align*}
ここで,  \sin^2{x}+\cos^2{x}=1の両辺を \sin^2{x}で割ると \displaystyle1+\frac{1}{\tan^2{x}}=\frac{1}{\sin^2{x}}なので,

\begin{align*}
\left(\frac{1}{\tan{x}}\right)^\prime &=   -\frac{1}{\sin^2{x}}\\
&=   -1-\frac{1}{\tan^2{x}}
\end{align*}
よって, 部分積分


\begin{align*}
f(x)=\frac{1}{\tan{x}},\quad g^\prime(x)=2x
\end{align*}

と考えると

\begin{align*}
f^\prime(x) = -\left(1+\frac{1}{\tan^2{x}}\right), \quad g(x)=x^2
\end{align*}

で,

\begin{align}
\int_{n}^{\frac{\pi}{4}} \frac{2x}{\tan{x}} dx &= \left[\frac{x^2}{\tan{x}}\right]_n^{\frac{\pi}{4}} + \int_{n}^{\frac{\pi}{4}} \left(1+\frac{1}{\tan^2{x}}\right)x^2 dx \\
&= \frac{\pi^2}{16}-\frac{n^2}{\tan{n}}+\int_{n}^{\frac{\pi}{4}} x^2 dx+\int_n^{\frac{\pi}{4}} \frac{x^2}{\tan^2{x}} dx\\
&= \frac{\pi^3}{192}+\frac{\pi^2}{16}-\frac{n^2}{\tan{n}}-\frac{1}{3}n^3+\int_n^{\frac{\pi}{4}} \frac{x^2}{\tan^2{x}} dx
\end{align}

\begin{align*}
\therefore \int_{n}^{\frac{\pi}{4}} \frac{x^2}{\tan^2{x}} dx - \int_{n}^{\frac{\pi}{4}} \frac{2x}{\tan{x}}dx = -\frac{\pi^3}{192}-\frac{\pi^2}{16}+\frac{n^2}{\tan{n}} + \frac{1}{3}n^3
\end{align*}
また,  \displaystyle \int_{n}^{\frac{\pi}{4}} dx = \frac{\pi}{4}-nなので,
\begin{align*}
\int_{n}^{\frac{\pi}{4}} \left(\frac{x}{\tan{x}}-1\right)^2 dx = -\frac{\pi^3}{192}-\frac{\pi^2}{16}+\frac{\pi}{4}+\frac{n^2}{\tan{n}} + \frac{1}{3}n^3 - n
\end{align*}
ここで,
\begin{align*}
\lim_{n\to +0} \frac{n^2}{\tan{n}} &=   \lim_{n\to +0} \left(\frac{n}{\sin{n}}\cdot n\cos{n}\right)\\
&=   1\cdot 0\cdot 1 \\
&=   0
\end{align*}
また,
\begin{align*}
\lim_{n\to+0} \left(\frac{1}{3}n^2-n\right)=0
\end{align*}
なので,
\begin{align*}
\lim_{n\to+0}\int_{n}^{\frac{\pi}{4}} \left(\frac{x}{\tan{x}}-1\right)^2 dx = -\frac{\pi^3}{192}-\frac{\pi^2}{16}+\frac{\pi}{4}
\end{align*}