関数の連続性と微分可能性
前回の記事で「関数の極限」の説明をしたので, 今回は関数の連続性と微分可能性について説明します.
連続性や微分可能性の定義の式は, それ自体が大学入試で問われることもあるので覚えておきましょう.
1. 関数の連続性
関数
関数 が点
で連続であるとは,
が存在して, その値が
に等しいことをいう.
が存在して, というのは, 右側極限と左側極限が一致する, という意味です (右側, 左側極限についてはこちら「関数の極限」).
つまり, 上の定義を少しだけわかりやすくいいかえると,
\begin{align*}
\lim_{x\to a-0}f(x) = \lim_{x\to a+0}f(x) = f(a)
\end{align*}
が成り立つ
となります.
また, 区間 に含まれるすべての点で連続であるとき,「
は区間
で連続である」, といいます.
注意.
連続でないことを'不連続である'とは言わないので注意しましょう.
例.

であるような点では,
となり, 連続です.
2. 微分可能性
関数
上の定義式で とおくと, 次のようにも書けます(こちらの方が有名かもしれません).
\begin{align*}
\lim_{h\to 0} \dfrac{f(a+h)-f(a)}{h}
\end{align*}
また, 区間 に含まれるすべての点で微分可能であるとき, 「
は区間
で微分可能である」, といいます.
注意.
微分可能でないことを'微分不可能である'とは言わないので注意しましょう.
3. 微分可能 ⇒ 連続 (連続 ⇏ 微分可能)
関数しかし, 連続であっても必ずしも微分可能ではありません. このことの有名な例が です (以下で説明します).
微分可能 ⇒ 連続 の証明
微分可能なので, 極限\begin{align*}
\lim_{x\to a}\dfrac{f(x)-f(a)}{x-a}
\end{align*}
が存在します. ここで, で
なので, 極限が存在するには
である必要があり,
\begin{align*}
\lim_{x\to a}\{f(x)-f(a)\} = 0
\end{align*}
つまり,
\begin{align*}
\lim_{x\to a} f(x) = f(a)
\end{align*}
となり, 連続です.
が
で連続であるが微分可能であることの証明
一方,
これは, から近づけると 1 に,
から近づけると -1 になるので, 極限が存在しません. つまり, 微分可能ではありません.